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Abstract—The quasisteady Nusselt number for a drop of condensate is calculated analytically for an
arbitrary contact angle in the range [0, #/2] using a spherical segment geometry. Uniform base temperature
is assumed and to ensure the boundedness of the total heat flux the convection boundary condition is used at
the free surface. Differential inequalities are used to obtain error bounds which approach zero as the contact
angle tends to n/2. For small contact angles the calculated Nusselt number tends to the exact value for a flat-
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NOMENCLATURE
Biot number;
spatial domain defined by the
interior of the droplet ;
boundary defined by the flat base of
the droplet ;
boundary defined by the free surface
of the droplet ;
heat-transfer coefficient at the
liquid—vapor interface
(free surface);
thermal conductivity of the droplet
liquid;
Nusselt number ;
difference between the bounds on Nu;
Legendre polynomial of the first
kind, nth order;
total heat flow through the droplet
upper bound on Q;
lower bound on Q;
local heat flux across the base ;
upper bound on g;
lower bound on ¢;
base radius of the droplet;
radius of curvature of droplet ;
dimensionless radial coordinate ;
dimensionless position vector ;
temperature distribution in the
droplet;
upper bound on T';
lower bound on T';
ambient temperature;
base temperature distribution;
constant base temperature ;
exact temperature distribution
for the proposed model ;
upper bound on T;;
lower bound on T;;
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disk droplet.

AT, difference between the vapor and
the base temperature;

t, time.

Greek symbols

0, angular coordinate;;

0,, contact angle;

A latent heat of vaporization of
droplet liquid ;

i, cosf;

Uy, cosfy;

o, density of droplet liquid.

1. INTRODUCTION

THE SIGNIFICANTLY higher heat flux observed for
dropwise (as opposed to filmwise) condensation has
inspired considerable research effort to better under-
stand the fundamental aspects of droplet formation
and growth. Although the process is exceedingly
complex, some simplification of the analyses is possible
using the results of Graham and Griffith [1] who
showed that most of the heat is transferred through
droplets of diameter less than 100 um. For such small
droplets the influence of gravity on the droplet shape is
negligible and a spherical-segment geometry may be
assumed. If it is further assumed that the heat transfer
and droplet growth are quasisteady the process is
governed by the steady heat-conduction equation and
an analytic formulation can be completed with various
boundary conditions.

Fatica and Katz [2] and others[3, 4] used constant-
temperature boundary conditions on the droplet base
and free surface for arbitrary contact angle. However,
the discontinuity in the boundary temperature along
the edge of the base prevents the computation of a
finite value of the heat flux (see Appendix B). Valid
solutions for the heat flux (required to compute the
droplet growth) can be obtained by requiring that the
boundary temperature be continuous. This condition
can be achieved by assuming a convective boundary
condition with a finite heat-transfer coefficient on the
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free surface. Umur and Griffith [5] used this boundary
condition together with uniform base temperature to
obtain an exact solution for a hemispherical droplet
which corresponds to a contact angle of 90°. Hemi-
spherical droplets were also analyzed by Hurst and
Oison [6] using the finite element method and they
overcame the temperature discontinuity problem by
considering heat conduction through the condenser
plate as well as the droplet. However, for different
contact angles the only valid results were obtained
numerically by Ahrendts [7].

In the present analysis the theory of differential
inequalities [8,9] is applied to obtain approximate
solutions which are upper and lower bounds for the
exact solutions of the temperature distributions in
droplets of arbitrary contact angle 0 < 8, < 7/2. Here
the exact solution is defined as the one corresponding
to zero base temperature and a convective boundary
condition at the free surface. It is further shown that
these approximate solutions become exact for 8, = 0
and 8, = n/2. Upper and lower bounds on the droplet
heat flux are also derived and finally an approximate
expression for the droplet Nusselt number as a func-
tion of the Biot number and contact angle is presented
with rigorous error bounds.

2. MATHEMATICAL FORMULATION

The growth of a single droplet depends on the
overall heat flux and, hence, it is necessary to find the
droplet temperature distribution T*r*). As a reason-
able physical model it is assumed that the base of the
droplet is at constant temperature Ty, and that the free
surface is exposed to constant ambient temperature T,.
Under the quasisteady assumption the dimensionless
temperature

T{r) = (T* - T, /AT (where AT = T,— Ty}

at any instant of the development of a droplet of radius
R’ is the solution to

VT(r)=Q inD {1y
T(r)lap, =0 )
6T(r)| _ h (7] 1 3)
on TR
2
0%
T
o0, /
le——R 2
__________________ =0/2 (hernis
RI

Fi1G. 1. Definition sketch for model.
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where D is the interior of the droplet, 0D, is the flat
base of the droplet, D, is the free surface of the
droplet, k is the thermal conductivity of the droplet
liquid, 4 is the heat-transfer coefficient at the free
surface, T(r) is the dimensionless temperature distri-
bution, 8T (r)/0n is the outward normal derivative, and
r = r*/R’ is the dimensionless position vector.

If spherical coordinates are used for this problem,
the boundary éD, cannot be defined by a single
coordinate except in the special case of a hemisphere
{see Fig. 1} Consequently, the boundary condition (2)
cannot be exactly satisfied except when the dropletisa
hemisphere. However, it can be approximately satis-
fied in this coordinate system if a sphere in a discon-
tinuous ambient temperature is considered as follows

1 é ¢
ZT x - 27
VTl py rzc?r(r ﬁr,)
[ ¢ , }
(g =0, 4
+3 P (1—p )(: 4)
8T (r, pt) h
e = [T(L) =T, 5
ar lr=1 kR’[ (1, 1) (1] }

where T, (u} is the ambient temperature and pu = cos 6.
In the region 4D, the equations (3) and (5) must be
identical and therefore, if 8, is the contact angle, then

Ty=1for py<u<l, {6}

where p, = cos .

Over the rest of the surface of the sphere T, (1) must
be chosen so that (2) is satisfied, at least approxi-
mately. Even if nonzero constant base temperature is
found the condition (2) can be satisfied by subtracting
that constant and scaling the resulting function. There-
fore, the problem now is to find T {u).—1 < u< pp
such that the base temperature is as uniform as

possible. If as a first attempt it is assumed that
() =0 —1<pu<p. (7

Ta 8
i

Horcos 90 I e cosB

{a)

Ta (4

-l (o) Ho= coseo t /J-"COSG

)

FiG. 2. Ambient temperature distributions: (a) trial, (b} used
to obtain solutions.
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(see Fig. 2a) then for large but finite values of h the
temperature at the edge of the droplet T(1, y,) takes on
approximately the average value of T,(u) at 1= Ho for
any p, i.e.

T, po) ~ 1. (8)

The temperature at the centre of the base is also close
to 1/2 for uy ~ 0,1.e. contact angle 8, ~ n/2. However,
as 6, approaches 0, this temperature approaches unity
and since the edge temperature is close to 1/2 for all
contact angles, the uniformity of the base temperature
becomes quite poor. Thus to assure uniformity of the
base temperature, the edge temperature must increase
with decreasing 6,. This may be achieved by weaken-
ing the discontinuity in T,(u) at 4 = u, by increasing
T,(u) linearly with u from T,(0) =0 to a suitable
constant T,(uo) = B(uo) depending on p, as yu in-
creases from O to y,, i.e.

t o< p< 1,
T,(1) =< Blpo)/e 0 < pu < g, 9)
0 —1gu<n,

(see Fig. 2b).

For 0, = n/2 (i.e. uo=0) equation (7) leads to
uniform base temperature and no correction for T,(u)
is needed. Therefore, in order that (7) and (9) be
identical for py = 0, it is necessary that #(0) = 0. Since
the temperature at the centre of the base approaches
unity as 8, — 0, good uniformity of the base tempera-
ture can be achieved by requiring that the edge
temperature also approaches unity for ,—0 and this
makes it necessary that f(1) = 1. Under these con-
ditions, a suitable expression for S(u,) is found to be

2cos-lu 2¢08" iy
ﬁ(#o)=‘ - —=2 ,
ie.
290 | 200/n
ﬁwo)=‘ 1—7| (10)

Using the expression (9) for T,(x)in equation (5) the
following expression for T'(r, u) is found

T(ry ,Ll) = Qo + Z anr"Pn(,u)
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Here the Biot number is defined in terms of the base
radius R as

hR  hR'(1—p3)*?
ko k '

Itis now appropriate to consider how well the solution

(11) satisfies the boundary condition (2) on the base of

the droplet. After substituting the relation defining the
base

Bi = (15)

r=fio/p (16)

into (11) the expression for the base temperature T,(u)
is

T =a+Za () P ()

which is presented in Fig. 3 for various values of the
Biot number and selected contact angles 8,,.
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F}G. 3. Base temperature distributions as a function of  for
different Biot numbers: (a) contact angle n/6, (b) contact
angle n/3.

UPPER AND LOWER BOUNDS

= (n If now for a given value of 8, and Bi, the minimum
b base temperature T, is subtracted from T'(r, u) and the
where resulting function divided by a scaling factor [1 - T,],
ao = 3(1— o) +4Bud, (12)  the following function is obtained
3 2 1 2
_(1_ )+ 1 _ T(r./.t)—T
gy =S E) A (13) T =— =t (18)
1+(1—pg)' */Bi 1-T,
and
(1= 2y Frlo) | Bluo) (1 = 13)[Patto) = o Pi(1o)] = P, (0)
2+ | T T n(n+1)—2
a, = 5 (=) (14)
1
Bi

n=2273,4,...
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This function exactly satisfies the differential equation

V¥ (r.p)=0 in D (19)
and one of the boundary conditions
CT(rp) h
— ——|op, e, —1 20
o D, = kR'[ 7, Wl ‘D, ] (20)
On dD, (i.e. the base),
0< T(r,ﬂnnnl (21)

by the definition of T,, i.e. the base boundary condition
is satisfied only as an inequality. If the boundary
conditions (2) and (3) are written in operator form

[ exact (r lu)]
exucl(ls )u) h
e

— ar kR/ ’Fexacl(lﬁ lu) in 6D2
Tcxucl (r, ﬂ)'ﬁD,
h .
in éD,
=JkR’
(22)
0in éD,
then
B[ Tepie (r, 1)) < BT (r, )] (23)
while
-v? TCXdCl (r, u) = -V (r,p) = 0. (24)

By applying the theorem stated in Appendix A, it can
be shown that as a consequence of (23) and (24),
T (r, ),

i.e. T (r, u) is the upper bound to the unknown exact
solution T,,,., (r, ) which satisfies (1), (2) and (3).
Similarly, by defining the function

T, p0)—T,
1-17,

Touar () < (25)

Tlr, ) = (26)

where T, is the maximum base temperature, it can be
shown that

V2T (r,u) = 0in D, (27)
aT(r, 1) h
- = ap, =—1Ttr, sp.— 11, 28
o fep, kR [T, 1)]ep,—1] (28)
and that
Tlr,p}lop, €90 (29

Again, application of the theorem, leads to the result
that

T(' “) < g\xcl(r’ Iu) (30'

From these upper and lower bounds for the tem-
perature, the bounds for the heat flux g(p) and the total
heat flow Q can be calculated as follows.

Since

T(r, ) € Toppellr, ) < Tlr, p), (31)

T(l 'u) ex_ul(l lu) 7(1,}1). (32)
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and
RT @) = 1] < W[ T (1 ) = 1]
<h[TLw—1]. (33)
By definition
= —h[T,.(Lw—1]AT (34)
and ifq(u) and q(y) are defined as
Ggu)= —h[T(1, p)—1]AT (35)
and
gy = —h[T(1, u}-1]AT (36)
then

q() < q(w) < gl
Consequently, the total heat flow Q has the bounds

‘RO

Q= -27R?*| q(p)du
ol
T
Q< -2mR? | G(du=0Q (37)
W1
where after integration it is found that
0 2nR"?h i )
77 _T, Ho
= a,,P;,(ﬂo)
1—ap)—(1+u —F— AT (38
( o) —( /o)ngl i+ 1) (38)
and
0 2aR"h ( )
= -7, Ho
< anP;n(ﬂO)
I—ag)—(1+ —— |AT. (39
( o) uO),,; YT (39)
4. DROPLET NUSSELT NUMBER
By defining the Nusselt number as
Nu = ~*Q— 40)
KRAT '
it can be shown that
S (o) Nug‘/(”f), @l
1-1, 1-17,
where
o) 2nBi
U
* T (4 p0)
Ho)
(1—ao)— (1 +40) Z . (42)

ue 1 1+1)

The quantities T, and 7, appearing in the inequality
(41) have to be determined numerically for each value
of i, and Bi. Since the base temperature T, (u)is almost
uniform (see Fig. 3) both T, and 7, can be approxi-
mated by the temperature T, (o) at the edge for which
case

o

Z a, Pn (#0 )

n=0

Tp> T, =~ T(po) = (43)



Heat transfer through drop condensate

The Nusselt number can then be approximated as

"y~ Jipo)
1 — T (o)
1€,
N 2aBi
T (o)
l(vma—u+%>§ﬂfﬁﬁz
x ez 1D T

l (I—GO)_ Z aavpn(.uo)

n=1

This expression for the Nusselt number is valid for
all values of the contact angle 8, = cos™ ! g, in the
range [0, 7/2] and is presented as a function of 6, for
values of the Biot number ranging from 0.05 to 20.0 in
Fig. 4. As 8, approaches 0, the Nusselt number
approaches the exact value nBi for a flat-disk droplet.

100.0

TTT

« Ahrendts'[ 7] results
- present analysis

S
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A
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¢ C 05—
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=
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} 1
20 30 40 S50 &0 70 8O 90
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FiG. 4. Nusselt number as a function of contact angle for
different Biot numbers.
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Also, a comparison of these results with those obtained
by Ahrendts [ 7] shows good agreement. It is interest-
ing to see that for Bi ~ 1, the Nusselt number is almost
invariant with the contact angle and, hence, experi-
ments which are independent of this parameter are
possible.

5. ERROR BOUNDS FOR NUSSELT NUMBER

An expression for the maximum error can be
obtained from equation (41). The difference between
the upper and lower bounds for Nu is given by

_ flo)  f{mo)

ANy = — {45)
1-7, 1-T,
from which the maximum error becomes
ANu 7’, - 7;,
== (46)

E = ———— = ez
min(Nu) 1-T7,

This bound on the error tends to zero, as 6, ap-
proaches n/2 because in this case 7, = 7, = 1, i.e. for
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8, = n/2 the expression (44) for Nu is exact and for
other contact angles close to n/2, ¢ is a good estimate of
the error. However, for small contact angles ¢ becomes
quite large but the actual error is quite small since Nu
given by (44) also approaches the exact value for 6,
=0.

6. ESTIMATE OF DROPLET GROWTH RATE

Under the quasisteady approximation used here, it
can be assumed that the heat conducted through the
droplet is equal to the heat transferred to it by
condensation. Therefore, if A is the latent heat of
vaporization, then

0= dt
AT

where p is the density of the droplet liquid and }'is the
volume of the droplet.

Now in terms of the base radius R and the contact
angle parameter

4V _ |1 (=) Qo)
(1—ud)*?

(47)

dr de|3

ie.
ﬂ = 2R? (1— o) (2+ o) ﬁ
de (1—pdy?  dr’
By making use of (40), (44), (47) and (48) it is not

difficult to show that the droplet base radius increases
at the rate

{48)

d_R ~ Tg'.lj. "_(1_‘*‘__#_0)_1_2“
dt 7 Ap (1-p0)' P2 + o)
< a,P, |
l (1—ag)—{l+u) Y Wi#]o)")
x =l . (49)
(1—ap)— 3, a,Py(1o)
n=1

7. DISCUSSION

The mathematical model presented in this study is
limited to cases in which the heat-transfer coefficient at
the free surface (i.e. at the liquid—vapour interface) is
finite. The case of infinite heat-transfer coefficient, i.e.
zero interfacial resistance, may be physically possible
and in such a situation, because the model predicts
zero overall resistance across the droplet, further
improvement is necessary. The difficulty arises in
assuming a uniform base temperature which is a valid
approximation if the resistance between the base and
the coolant is negligible compared to the
liquid—vapour interfacial resistance or if the condenser
thickness is of the same or higher order as the droplet
size [6]. For the physically impossible case in which
the resistances at both the interfaces are zero, the edge
temperature is discontinuous and the overall droplet
resistanceis also zero. Fatica and Katz [ 2] were able to
find non-zero resistance in their analysis because they
divided the droplet into a finite number of elements
and added the resistances of the elements. However, it
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can be shown that in the limit of the number of
elements going to infinity the calculated resistance
must go to zero. Sugawara and Michiyoshi [4] and
Nijaguna [3] also obtained nonzero resistance and in
their cases the error was due to the premature
truncation of the divergent series representing total
flow (see Appendix B).

In the analysis by Umur and Griffith [5] a relation
between the droplet radius of curvature and time was
given for an arbitrary contact angle. This relation
implies a nonzero total resistance in the limit of the
liquid- vapor interfacial resistance going to zero. This
nonzero resistance is quite meaningless from a math-
ematical point of view, unless it contains some
parameters related to the condenser—surface resistance
which it does not.

The good agreement between the results of the
present analysis and the numerical solutions of
Ahrendts [7] provides mutual confirmation. The
analytic solutions have the usual advantages over the
numerical results but more importantly they are also
the groundwork for further contributions exploiting
the use of differential inequalities for the analysis of
droplets. Indeed, results similar to Appendix A are
available for the usual parabolic operators which
describe most diffusion-controlled mechanisms for
heat and mass transfer, e.g. [ 10].
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APPENDIX A
Theorem (Adapted from [8])
Let E be an elliptic differential operator defined in the
domain D and let B be a boundary operator defined on the
boundary éD by

— +aw

Blw] = ( én

w|fn1 s

‘w )‘
’ I"”l (Al)

where éD = 0D, UéD,, wis a continuous function in D, ais a
non-negative function on D, and &/én is the outward normal
derivative.

Let u and v be continuous functions in D such that E[u].
E{v], B[u] and B[v] all exist.

If

— E[u] < —E[v] and B[u] < B[v]. (A2)
then
ugo. (A3)
APPENDIX B

Unboundedness of Total Heat Flow for
Discontinuous Boundary Temperature

For a hemispherical droplet with zero base temperature
and unit temperature on the free surface, the total heat flow,
Q through the droplet is given by 3. 4]

0 2 n+3EemPCn+ )
2tRk 2 (2n+2)2*"(n!)*
where k is the thermal conductivity of the droplet liquid, and

R is the base radius.
It is not difficult to see that

Un+ 3022 +1)
2n+172% ()

(BI)

(Bn+3)n+ D2}
(2n+2)22%(n1)*

_ 3 @eny |?

T 4|21y

_ 3 (3G

T4 (n

(B2)

However, the complete elliptic integral of the first kind is
given by

a2 do & @G,
o (I—zisin?)l? 2 & (1)a! "~

Therefore, by letting z = 1 in (B3) and using (B1) and (B2)
one can show that

. (B3)

K(z)=J

rrtl d Jel
223 ¢ = —3log tan(z—i) -
kR o COS¢ 4 274
Therefore,
Q- o for kR>0. (B4)

TRANSFERT THERM¥QUE PAR CONDENSATION EN GOUTTES EN
UTILISANT DES INEGALITES DIFFERENTIELLES

Résumé—On calcule analytiquement le nombre de Nusselt quasi statique pour une goutte de condensat.

avec un angle de contact arbitraire, dans le domaine [0, /2] et en utilisant un segment sphérique. On

suppose une température uniforme a la base et, pour assurer la conservation du flux thermique total,

on utilise la condition de convection a la surface libre. On utilise des inégalités différentielles pour

obtenir des limites d’erreur qui tendent vers zéro quand ’angle de contact tend vers =/2. Pour des petits

angles de contact le nombre de Nusselt calculé tend vers la valeur exacte correspondant 4 une goutte
en forme de disque plat.
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DIE BERECHNUNG DES WARMEUBERGANGS IN KONDENSATTROPFEN
MIT HILFE VON DIFFERENTIAL-UNGLEICHUNGEN

Zusammenfassung— Unter Voraussetzung einer kugelformigen Oberfliche wird die quasistationére

Nusselt-Zahl fiir einen Kondensattropfen mit beliebigem Randwinkel zwischen 0 und 2z analytisch

berechnet. Die Fulitemperatur wird als gleichf6rmig angenommen: an der freien Oberfliche wird die

Randbedingung dritter Art angesetzt. Mit Hilfe von Differential-Ungleichungen werden Fehlergrenzen

abgesteckt ; mit Anndherung des Randwinkels gegen /2 gehen sie gegen Null, Fiir kleine Randwinkel néhert
sich die berechnete Nusselt—Zahl dem exakten, fiir einen flachscheibigen Tropfen giiltigen Wert.

PACYET XAPAKTEPUCTUK MNEPEHOCA TEIUIA YEPE3 KATIEJIbHBI
KOHAEHCAT C INOMOWBIO JUPPEPEHLIMAJIbBHBIX HEPABEHCTB

Amnoragn — Mcnonkiys cHEPHYECKYIO TEOMETPHIO CEIMEHTA, PACCUHTLIBAETCH AHANUTHUYECKH
KBa3uCTALHOHAPHOE uncno HyccenbTa s ¥amiy KOHACHCATA NPH NPOH3BOABLHOM 3HAYCHHM Kpae-
Boro yrna B auanasone [0, #/2]. Jenaerca ponyllieHHe O MOCTONHHON TEMUOEPATYPE ¥ OCHOBAaHHS
KaluiH, & Ui BHIIOJIHEHMS YCIOBHA OrpaHH4YeHHOCTH ofiiero TemioBOro NOTOKA 3a4aHO HamHvHe
KOHBEKLMK Ha cBoGogmo# nosepxHocTd. J{nddepeHuuanbHple HEpaBCHCTBA MCNONB3YIOTCA IS
TIONIYYeHMS TIOPOTA NMOTPELUHOCTEH, KOTOPLI NpubAMKaeTCA K HYAI0 0O MEPE TOro, KaK XpaesoH
yroJa crpemuTes K 7/2. ns HeSonbuinX Kpaesbix YIIIoB pacieTsoe 4ucno HyccennTa CTpeMHMTCS K
TOYHOMY 3HAYEHHIO U1 KanM B GopMe IUIOCKOro JHCKa.
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